Similarity-based methods: a general framework for classification, approximation and association
نویسنده
چکیده
Similarity-based methods (SBM) are a generalization of the minimal distance (MD) methods which form a basis of several machine learning and pattern recognition methods. Investigation of similarity leads to a fruitful framework in which many classification, approximation and association methods are accommodated. Probability p(C|X;M) of assigning class C to a vector X, given a classification model M, depends on adaptive parameters and procedures used in construction of the model. Systematic overview of choices available for model building is described and numerous improvements suggested. Similarity-Based Methods have natural neural-network type realizations. Such neural network models as the Radial Basis Functions (RBF) and the Multilayer Perceptrons (MLPs) are included in this framework as special cases. SBM may also include several different submodels and a procedure to combine their results. Many new versions of similarity-based methods are derived from this framework. A search in the space of all methods belonging to the SBM framework finds a particular combination of parameterizations and procedures that is most appropriate for a given data. No single classification method can beat this approach. Preliminary implementation of SBM elements tested on a realworld datasets gave very good results.
منابع مشابه
A Framework for Optimal Attribute Evaluation and Selection in Hesitant Fuzzy Environment Based on Enhanced Ordered Weighted Entropy Approach for Medical Dataset
Background: In this paper, a generic hesitant fuzzy set (HFS) model for clustering various ECG beats according to weights of attributes is proposed. A comprehensive review of the electrocardiogram signal classification and segmentation methodologies indicates that algorithms which are able to effectively handle the nonstationary and uncertainty of the signals should be used for ECG analysis. Ex...
متن کاملA new vector valued similarity measure for intuitionistic fuzzy sets based on OWA operators
Plenty of researches have been carried out, focusing on the measures of distance, similarity, and correlation between intuitionistic fuzzy sets (IFSs).However, most of them are single-valued measures and lack of potential for efficiency validation.In this paper, a new vector valued similarity measure for IFSs is proposed based on OWA operators.The vector is defined as a two-tuple consisting of ...
متن کاملImproving Imbalanced data classification accuracy by using Fuzzy Similarity Measure and subtractive clustering
Classification is an one of the important parts of data mining and knowledge discovery. In most cases, the data that is utilized to used to training the clusters is not well distributed. This inappropriate distribution occurs when one class has a large number of samples but while the number of other class samples is naturally inherently low. In general, the methods of solving this kind of prob...
متن کامل2D Dimensionality Reduction Methods without Loss
In this paper, several two-dimensional extensions of principal component analysis (PCA) and linear discriminant analysis (LDA) techniques has been applied in a lossless dimensionality reduction framework, for face recognition application. In this framework, the benefits of dimensionality reduction were used to improve the performance of its predictive model, which was a support vector machine (...
متن کاملGDOP Classification and Approximation by Implementation of Time Delay Neural Network Method for Low-Cost GPS Receivers
Geometric Dilution of Precision (GDOP) is a coefficient for constellations of Global Positioning System (GPS) satellites. These satellites are organized geometrically. Traditionally, GPS GDOP computation is based on the inversion matrix with complicated measurement equations. A new strategy for calculation of GPS GDOP is construction of time series problem; it employs machine learning and artif...
متن کامل